Please check the examination details below Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Monday 20 May	2019
Morning (Time: 1 hour 30 minutes)	Paper Reference WCH01/01
Chemistry Advanced Subsidiary Unit 1: The Core Principles of	of Chemistry
Candidates must have: Scientific calc	Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 The relative atomic mass of an element is always
 - A the mass of an atom of the element relative to ½ the mass of a carbon-12 atom.
 - **B** the mass of an atom of the element relative to the mass of a hydrogen atom.
 - the weighted mean mass of an atom of the element relative to the mass of a hydrogen atom.
 - D the weighted mean mass of an atom of the element relative to 1/12 the mass of a carbon-12 atom.

(Total for Question 1 = 1 mark)

- 2 The value of the Avogadro constant is equal to the number of
 - **A** grams of carbon in one mole of carbon.
 - **B** atoms in one mole of oxygen gas.
 - C atoms in one mole of helium gas.
 - **D** ions in one mole of sodium chloride.

(Total for Question 2 = 1 mark)

- 3 The alkane with the same empirical formula as butane is
 - **A** ethane.
 - **B** propane.
 - C 2-methylpropane.
 - **D** 2,2-dimethylpropane.

(Total for Question 3 = 1 mark)

- 4 The percentage by mass of hydrogen in heptane, C_7H_{16} , is

 - **■ B** 69.6
 - **C** 19.0
 - **☑ D** 16.0

(Total for Question 4 = 1 mark)

- 5 What is the **total** number of alkenes and cycloalkanes with the molecular formula C_4H_8 ?

 - **■ B** 4
 - **区** 5
 - **■ D** 6

(Total for Question 5 = 1 mark)

6 How many **electrons** are in 10.1 g of neon?

[Avogadro constant = $6.0 \times 10^{23} \text{ mol}^{-1}$]

- \triangle **A** 6.0 × 10²⁴
- **B** 3.0×10^{24}
- \bigcirc **C** 6.0 × 10²³
- \square **D** 3.0 × 10²³

(Total for Question 6 = 1 mark)

7 Bioethanol can be made by the fermentation of glucose.

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

The atom economy by mass for the production of ethanol in this reaction is

- **△ A** 67%.
- **■ B** 51%.
- **◯ C** 50%.
- D 40%.

(Total for Question 7 = 1 mark)

8 A typical adult human has 5.0 dm³ of blood, which contains a total of 35 cm³ of white blood cells.

What is the concentration of white blood cells, in parts per million, by volume?

- **■ B** 7000
- **D** 142 900 000

(Total for Question 8 = 1 mark)

- **9** What type of reaction occurs when dilute sulfuric acid reacts with aqueous barium chloride?
 - A Displacement
 - B Neutralisation
 - C Oxidation
 - D Precipitation

(Total for Question 9 = 1 mark)

10 When 10 cm³ of 1.0 mol dm⁻³ hydrochloric acid is added to 5.0 cm³ of 0.50 mol dm⁻³ sodium hydroxide in a polystyrene cup, the temperature rises by 2.3 °C.

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$$

The temperature rise when $10\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol\,dm^{-3}}$ hydrochloric acid is added to $20\,\mathrm{cm^3}$ of $0.50\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide is

- **■ B** 9.2 °C.
- ☑ C 4.6°C.
- ☑ D 2.3 °C.

(Total for Question 10 = 1 mark)

- 11 Which equation represents the **second** ionisation energy of magnesium?
 - \square A Mg(s) \rightarrow Mg²⁺(s) + 2e⁻
 - \square **B** Mg(g) \rightarrow Mg²⁺(g) + 2e⁻
 - \square **C** Mg⁺(s) \rightarrow Mg²⁺(s) + e⁻
 - \square **D** Mg⁺(g) \rightarrow Mg²⁺(g) + e⁻

(Total for Question 11 = 1 mark)

12 From aluminium to silicon, the first ionisation energy increases by about 200 kJ mol⁻¹.

From silicon to phosphorus, the first ionisation energy

- \triangle A increases by about 200 kJ mol⁻¹.
- **B** does not change.
- \square **C** decreases by about 200 kJ mol⁻¹.
- \square **D** increases by about 400 kJ mol⁻¹.

(Total for Question 12 = 1 mark)

13 The melting temperatures, in kelvin, of nine successive elements in the Periodic Table are given. The numbers are not the atomic numbers of the elements.

Element	1	2	3	4	5	6	7	8	9
T _m /K	25	371	922	933	1683	863	386	172	84

Which numbered element is in Group 2 of the Periodic Table?

- **■ B** 3
- **区** 4
- **■ D** 5

(Total for Question 13 = 1 mark)

14 Which is correct for the elements going down Group 1?

	Melting temperature	First ionisation energy
⊠ A	decreases	decreases
	decreases	increases
	increases	decreases
■ D	increases	increases

(Total for Question 14 = 1 mark)

15 Two microscope slides covered in damp filter paper are connected to wires by crocodile clips.

A crystal of copper(II) sulfate is placed in the centre of the left-hand slide and a crystal of potassium manganate(VII) is placed in the centre of the right-hand slide.

A DC electrical supply is connected to make the left-hand side positive as shown.

The directions in which the blue colour and the purple colour move are

		Blue colour	Purple colour
X	A	left	right
X	В	left	left
X	c	right	left
X	D	right	right

(Total for Question 15 = 1 mark)

16 Which molecule has the same total number of electrons as a molecule of carbon dioxide?

- \triangle A N_2O
- \square **B** NO_2
- C COS
- \square **D** CS_2

(Total for Question 16 = 1 mark)

- 17 Which species move when a potential difference is applied to a solid metal?
 - **A** Positive ions only
 - ☑ B Electrons only
 - ☑ C Positive and negative ions
 - Positive ions and electrons

(Total for Question 17 = 1 mark)

18 The numbers of sigma (σ) and pi (π) bonds in ethene are

	sigma (σ)	pi (π)
⊠ A	four	two
⊠ B	four	one
⊠ C	five	two
■ D	five	one

(Total for Question 18 = 1 mark)

19 Crude oil is separated by fractional distillation in a fractionating column.

The fractions obtained have different boiling temperature ranges and mean molar masses.

How does the boiling temperature range and the mean molar mass of the fractions change, moving **down** the fractionating column?

	Boiling temperature	Mean molar mass
⊠ A	increases	increases
⊠ B	decreases	increases
⊠ C	increases	decreases
■ D	decreases	decreases

(Total for Question 19 = 1 mark)

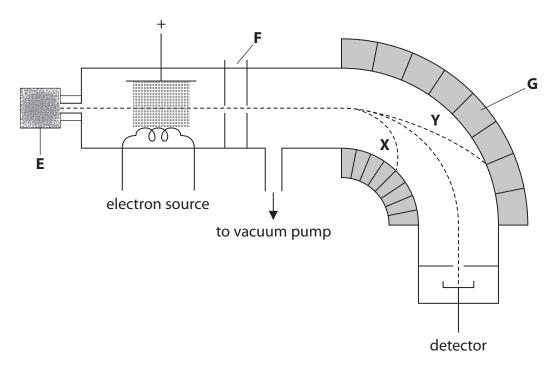
20 What is the systematic name for the chlorofluorocarbon compound shown?

- **A** *E*-1,2-dichloro-2-fluoroethene
- **■ B** *Z*-1,2-dichloro-2-fluoroethene
- ☑ C E-1,2-dichloro-1-fluoroethene
- ☑ D Z-1,2-dichloro-1-fluoroethene

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE



SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

21 This question is about mass spectrometry, and the elements gold and copper.

A diagram of a mass spectrometer is shown.

(a) (i) Identify the three parts of the mass spectrometer, **E**, **F** and **G**.

(3)

E		
F		
G		
•		
	*(ii) Suggest how the ions travelling along paths X and Y differ in mass or charge	
	from the ions reaching the detector.	
	*(ii) Suggest how the ions travelling along paths X and Y differ in mass or charge from the ions reaching the detector.	(2)
	from the ions reaching the detector.	(2)
	from the ions reaching the detector.	(2)
	from the ions reaching the detector.	(2)
		(2)
		(2)
		(2)

- (b) Copper has two stable isotopes with mass numbers of 63 and 65.
 - (i) For each isotope of copper, complete the table to show the number of protons, neutrons and electrons present in Cu⁺ ions.

(2)

Mass number	Number of protons	Number of neutrons	Number of electrons
63			
65			

(ii) State the meaning of the term isotopes, quoting information from the table.	(1)

(c) Gold and copper are used to make alloys.

The composition of gold-copper alloys may be found using mass spectrometry.

The mass number and percentage abundance of each isotope in an alloy are given in the table.

Mass number	Percentage abundance
63	36
65	15
197	49

(i) Calculate the relative atomic mass of copper to **one decimal place** using the data for the two copper isotopes only.

You must show your working.

(3)

(ii) Calculate the percentage by mass of copper and of gold in this alloy. Give your answer to **two** significant figures.

(2)

(iii) The purity of gold by mass is often expressed in carats, where pure gold is 24 carat.

Calculate the purity of this gold alloy in carats.

Give your answer to **two** significant figures.

(1)

(Total for Question 21 = 14 marks)

- 22 This question is about some reactions of acids.
 - (a) Copper(II) oxide reacts with sulfuric acid to form copper(II) sulfate.
 - (i) State what you would **see** on adding a small amount of copper(II) oxide to excess dilute sulfuric acid, and warming the mixture.

(2)

(ii) Write the **ionic** equation, including state symbols, for this reaction.

(2)

(b) Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen gas.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

Calculate the volume of hydrogen formed at room temperature and pressure (r.t.p.) when excess magnesium reacts with 25.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid.

[Molar volume of a gas at r.t.p. is 24.0 dm³ mol⁻¹]

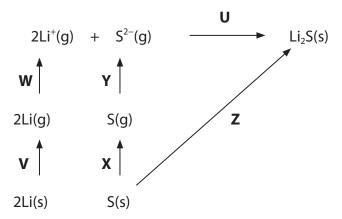
(3)

(c) Write the **ionic** equation for the reaction in solution of any strong acid with any strong alkali.State symbols are not required.

(1)

(Total for Question 22 = 8 marks)

- 23 This question is about the lattice energy of lithium sulfide, Li₂S.
 - (a) Complete the electronic configuration for the element sulfur.


(1)

1s²_____

(b) Draw a dot-and-cross diagram for lithium sulfide. Show outer shell electrons only.

(2)

(c) An energy cycle used to determine the experimental lattice energy, **U**, of lithium sulfide is shown.

 (i) Complete the list by identifying the enthalpy or energy changes represented by W, X, Y and Z.
 Include any appropriate multiples.

(4)

 ${f V}$ 2 × enthalpy change of atomisation of Li

W

Υ

Z

(ii) Complete the equation for the lattice energy, **U**, in terms of **V**, **W**, **X**, **Y**, and **Z**.

(1)

U=

- (d) Lattice energies can be obtained experimentally from the Born-Haber cycle or from theoretical calculation.
 - *(i) The theoretical lattice energies of four compounds are shown.

Compound	Lattice energy / kJ mol ⁻¹
LiF	-1031
LiCl	-845
Li ₂ O	-2799
Li ₂ S	-2376

Explain, using the data, the factors that affect the magnitude of the lattice energy of these compounds.

- 1	

*(ii) The value of the experimental lattice energy of lithium sulfide is $-2499 \, \text{kJ} \, \text{mol}^{-1}$. Whereas the theoretical value is $-2376 \, \text{kJ} \, \text{mol}^{-1}$.

Explain the difference between the experimental and theoretical values for the lattice energy of lithium sulfide.

(3)

(iii) Draw a diagram to show the shapes of the electron clouds around the lithium and sulfide ions.

(1)

 Li^+ S^{2-}

(Total for Question 23 = 15 marks)

24 This que	stion is about butane, C_4H_{10} , and but-2-ene, C_4H_8 .	
	Vrite equations for the complete combustion of butane and but-2-ene in oxygentate symbols are not required.	en.
_		(2)
Butai	ne equation	
But-2	2-ene equation	
(ii) 0	0.1 mol of butane is burned in 0.8 mol (an excess) of oxygen gas.	
0	0.1 mol of but-2-ene is also burned in 0.8 mol (an excess) of oxygen gas.	
	Calculate the final total number of moles of gas at the end of these reactions at room temperature.	
u		(2)

Moles of gas from butane

Moles of gas from but-2-ene

(2)

(2)

- (b) Butane and but-2-ene react differently with bromine.
 - (i) Give the condition needed for the reaction of bromine with butane.

(1)

(ii) Give the initiation step for the reaction of bromine with butane. Show the movement of electrons with curly half-arrows.

(2)

(iii) Give **two** propagation steps for the reaction of bromine with butane to form C_4H_9Br .

Curly half arrows are not required.

(2)

(iv) Give **one** termination step for the reaction of bromine with butane, forming an **organic** compound.

Curly half arrows are not required.

(1)

(v) Give the mechanism for the reaction of bromine with but-2-ene.

Include curly arrows, and relevant dipoles and lone pairs.

(4)

(c) But-2-ene reacts with hydrogen bromide. Give the **skeletal** formula for the product. (1)

(d) But-2-ene reacts with acidified potassium manganate(VII).

Give the **structural** formula and name of the product.

(2)

Name

(e) But-2-ene can be polymerised.

Write the balanced equation, using **displayed** formulae, for the polymerisation of but-2-ene.

(2)

(f) (i) Use the data to calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of but-2-ene.

Quantity	Energy/ kJ mol ⁻¹
$\Delta H_{\mathrm{at,298}}[\frac{1}{2}H_2(g)]$	+218
$\Delta H_{\rm at,298}$ [C(s, graphite)]	+717
<i>E</i> (C—C)	+347
<i>E</i> (C ─ C)	+612
<i>E</i> (C—H)	+413

(3)

$$4C(s)\,+\,4H_2(g)\,\rightarrow\,C_4H_8(g)$$

(ii) Suggest why your answer to (f)(i) is unlikely to be exactly in agreement with the value in a data book.

(1)

(Total for Question 24 = 23 marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

The Periodic Table of Elements

0 (8)	(18)	H =	netium 2
7			(17)
9			(16)
2			(12)
4			(14)
m			(13)
	1.0	H hydrogen	Key
2			(2)

2	20.2	Ne	neon	10	39.9	ΑΓ	argon	18					131.3	Xe	xenon	54	[222]	R	radon	98		ted		
(17)	19.0	ш	fluorine	6	35.5	ರ	chlorine	17	6.67	В	bromine	35	126.9		•—	53	[210]	Αt	astatine	85		een repor		
(16)	16.0	0	oxygen	∞	32.1	S	sulfur	16		Se	selenium	34	127.6	<u>P</u>	tellurium	52	[506]	9	polonium	84		116 have b	ticated	
(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus	15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	Bi	bismuth	83		.hers 112-	but not fully authenticated	
(14)	12.0	U	carbon	9	28.1	Si		14		ge		32	118.7			50	207.2	Ъ	lead	82		atomic nun	but not fu	
(13)	10.8	Ω	poron	2	27.0	A	aluminium	13	2.69	Ga		31	114.8	I	indium	49	204.4	F	thallium	81		Elements with atomic numbers 112-116 have been reported		
•					•			(12)	65.4	Zn		30	112.4	8	cadmium	48	200.6	Ξœ	mercury	80		Elem		
							;	(11)	63.5	no	copper	29	107.9	Ag	silver	47	197.0	PΠ	plog	79	[272]	R g	oentgenium	111
							í	(01)	58.7	ï	nickel	28	106.4	Pd	palladium	46	195.1	£	platinum	78	[271]	Ds	meitnerium damstadtium roentgenium	110
							į	(6)	58.9	ပ	cobalt	27	102.9	R	rhodium	45	192.2	<u>'</u>	iridium	77	[568]	Mt	meitnerium	109
							į	(8)	55.8	Fe	iron	26	101.1	Ru	ruthenium	44	190.2	S O	osmium	76	[277]		hassium	
							į	(2)	54.9	۸n	manganese	25	[86]	ပ	technetium	43	186.2	Re	rhenium	75	[264]	Bh	bohrium	10/
	mass	pol		number			;	(9)	52.0	ڻ	chromium	24	62.6	Wo	molybdenum	42	183.8	≯	tungsten	74	[596]	Sg	seaborgium	106
Key	relative atomic mass	atomic symbol	name	atomic (proton) number			į	(5)	6.03	>	vanadium	23	92.9	q	niobium	41	180.9	Ta	tantalum	73	[262]	В	dubnium	105
	relati	ato		atomic			;	(4)	6.74	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium	72	[261]	R	rutherfordium	104
							į	(3)	45.0	Sc	scandium	21	88.9	>	yttrium		138.9	La*	lanthannm	57	[227]	Ac*	actinium	89
(2)	9.0	Be	beryllium	4	24.3	Mg	magnesium	12	40.1	Ca	calcinm	20	97.6	Sr	strontium	38	137.3	Ва	barium	26	[526]	Ra	radium	88
(1)	6.9	ï	lithium	3	23.0	Na	sodium	11	39.1	¥	potassium	19	85.5	ВЪ	rubidium	37	132.9	S	caesium	55	[223]	Fr	francium	8/

series
* Lanthanide

^{*} Actinide series

		E	\neg	_		mn	
175	ב	lutetiu	71	[257	۲	lawrenci	103
173	ΥÞ	ytterbium	70		8 N	Ĕ	102
169	ᄪ	thulium	69	[526]	ÞΨ	mendelevium	101
167	Ē	erbium	68	[253]	Fm	fermium	100
165		holmium		[254]	Es	einsteinium	66
163	٥	dysprosium	99	[251]	ರ	californium	98
159	ТР	terbium	65	[245]	짪	berkelium	26
157	РS	gadolinium	64	[247]	Cm	aurium	96
152		europium	63	[243]	Am	americium	95
150	Sm	samarinm	62	[242]	Pu	plutonium	94
[147]	Pm	promethium	61	[237]	Å	neptunium	93
144	PZ	neodymium	09	238	⊃	uranium	92
141	P	praseodymium	59	[231]	Pa	norium protactinium uranit	91
140	S	cerium	28	232	루	thorium	06