	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Tuesday 7 May 2	2019
Afternoon (Time: 1 hour 15 minutes)	Paper Reference WCH03/01
Chemistry Advanced Subsidiary Unit 3: Chemistry Laborator	ry Skills I
Candidates must have: Scientific calc Ruler	ulator Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

BLANK PAGE

Answer ALL the questions. Write your answers in the spaces provided.

- 1 Inorganic compounds **A** and **B** each contain one cation and one anion.
 - (a) Two tests were carried out on **A**. The observation for each test was recorded in the table.
 - (i) Complete the statements in the inference column by writing the names or formulae of the ions and the gas.

(3)

Test	Observation	Inference
Test 1 A flame test was carried out on a sample of A	A lilac flame was seen	The cation in A is
		The gas evolved is
Test 2 A sample of A was heated in a dry test tube	A colourless gas was evolved, which relit a glowing splint	The anion in A is

(ii) Write the equation for the reaction in **Test 2**. State symbols are **not** required.

(b) The cation in compound **B** is formed from a metal in **Group 2** of the Periodic Table.

Three tests were carried out on **B**. The observation for each test was recorded in the table.

(i) Complete the statements in the inference column by writing the names or formulae of the ions and the precipitate.

(3)

Test	Observation	Inference
Test 3 A flame test was carried out on a sample of B	A crimson red flame was seen	The cation in B is
Test 4 A few drops of dilute sulfuric acid were added to an aqueous solution of B	A white precipitate formed	The precipitate is
Test 5 Dilute nitric acid and aqueous silver nitrate were added to an aqueous solution of B	A cream precipitate formed	The anion in B is

(ii) Write the **ionic** equation for the reaction in **Test 4**. Include state symbols.

(2)

Describ possible	ent who carried out Test 5 recordent who carried out Test 5 recordene a test on the precipitate that we anions in B . The result of the test for each possible the control of the test for each possible the	ould distinguish between the two	
	•		(2)
		(Total for Question 1 = 11 ma	arks)

- 2 An organic compound **D** has the molecular formula C₄H₈O.
 - (a) Two tests were carried out on **D**. The observation and inference for each test were recorded in the table.

Test	Observation	Inference
Test 1 A small amount of reagent X was added to a sample of D	A gas was given off that produced steamy fumes in air and turned damp blue litmus paper red	D contains an —OH group
Test 2 A few drops of reagent Y were added to a sample of D	The orange-brown reagent Y turned colourless when added to D	D contains C=C

(i) Identify reagent **X** by name or formula.

(1)

(ii) Identify the steamy fumes produced in **Test 1** by name or formula.

(1)

(iii) Identify reagent Y by name or formula.

(1)

(b) The mass spectrum of **D** includes peaks at m/e = 15 and m/e = 31.

Identify the ions that give these peaks.

(2)

Formula of the ion giving the peak at m/e = 15

Structure of the ion giving the peak at m/e = 31

(c) The molecular formula of compound \mathbf{D} is C_4H_8O .

Compound **D** has a **branched** chain structure.

The functional groups identified in **Test 1** and **Test 2** are on **different** carbon atoms.

Use this information and your answer to (b) to deduce the structure of **D**.

(1)

(d) Cyclobutanol also has the molecular formula C_4H_8O .

By considering the bonds in cyclobutanol and **D**, describe how infrared spectroscopy can be used to distinguish between these two compounds. Specific wavenumber ranges are not required.

(1)

(Total for Question 2 = 7 marks)

3 Iron reacts with copper(II) sulfate solution, CuSO₄(aq), in a redox reaction and solid copper is produced.

Five students carried out an investigation to find out whether iron(II) sulfate or iron(III) sulfate is the other product in this reaction.

Procedure

- Step 1 Weigh a given mass of iron filings in a small beaker.
- Step 2 Add 25 cm³ (an excess) of copper(II) sulfate solution to the iron filings.
- Step **3** Warm the beaker and contents. The copper produced settles at the bottom of the beaker.
- Step 4 Pour off as much of the solution as possible and wash the copper with distilled water.
- Step **5** Weigh a piece of filter paper and use it to filter off the copper.
- Step 6 Dry the filter paper and copper in a warm oven.
- Step **7** Allow the filter paper and copper to cool and then reweigh them to find the mass of copper produced.

Results

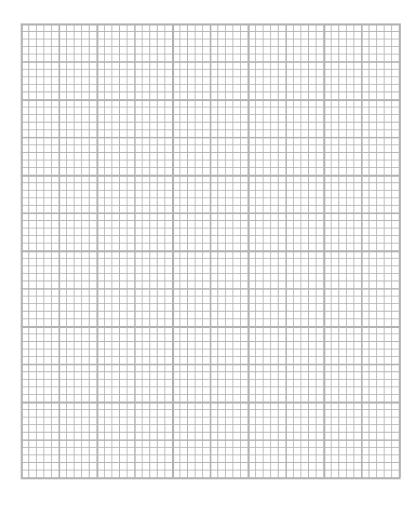
Student	Mass of iron used / g	Mass of copper produced / g
1	0.21	0.20
2	0.39	0.48
3	0.60	0.94
4	0.82	0.88
5	0.98	1.12

(a) Name a suitable piece of apparatus to measure 25 cm³ of copper(II) sulfate in Step 2.

(1)

(b) The mass of copper recorded by student 3 is anomalous.

Suggest an error made by this student that would explain this anomalous result other than the incorrect use of the weighing balance.


r	_	'n.	
ı	٦	1	
١.		и	

(c) Plot a graph of mass of copper (y-axis) against mass of iron (x-axis).

Draw a straight line of best fit on the graph.

(3)

(d) Use the graph to determine the mass of copper that would be produced from 0.56 g of iron.

(e) Deduce the balanced equation for the reaction between iron and copper(II) sulfate.

State symbols are not required. You **must** show your working.

Use the following relative atomic masses: Cu = 64, Fe = 56

(2)

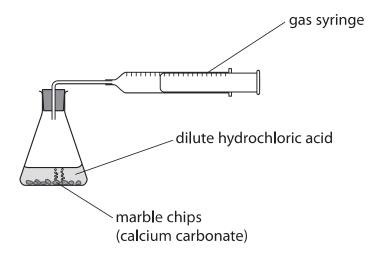
(f) Give a reason why it is acceptable to use the relative atomic masses as 64 and 56 in (e) rather than the values of 63.5 and 55.8 given in the Periodic Table.

(1)

(g) Student 2 used 50 cm³ of copper(II) sulfate instead of 25 cm³. Give a reason why this will **not** affect the mass of copper produced.

(1)

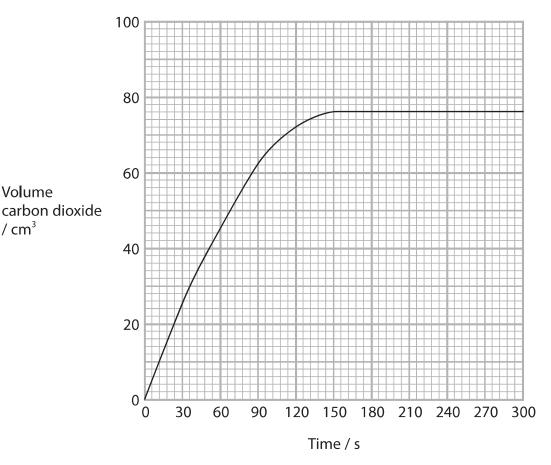
(Total for Question 3 = 10 marks)


BLANK PAGE

4 Marble chips react with dilute hydrochloric acid.

$$\mathsf{CaCO_3}(s) \,+\, 2\mathsf{HCl}(\mathsf{aq}) \,\rightarrow\, \mathsf{CaCl_2}(\mathsf{aq}) \,+\, \mathsf{H_2O}(\mathsf{l}) \,+\, \mathsf{CO_2}(\mathsf{g})$$

The rate of this reaction can be investigated by measuring the volume of carbon dioxide produced at regular time intervals using the apparatus shown.


A student followed this procedure:

- place 25 cm³ of dilute hydrochloric acid in a conical flask
- set up the apparatus as shown and ensure the gas syringe reads 0 cm³
- remove the bung, add 5 g of large marble chips (an excess) to the acid in the flask and replace the bung immediately
- record the volume of gas in the gas syringe every 30 seconds.

Volume

/ cm³

The results of the experiment with large marble chips are shown on the graph.

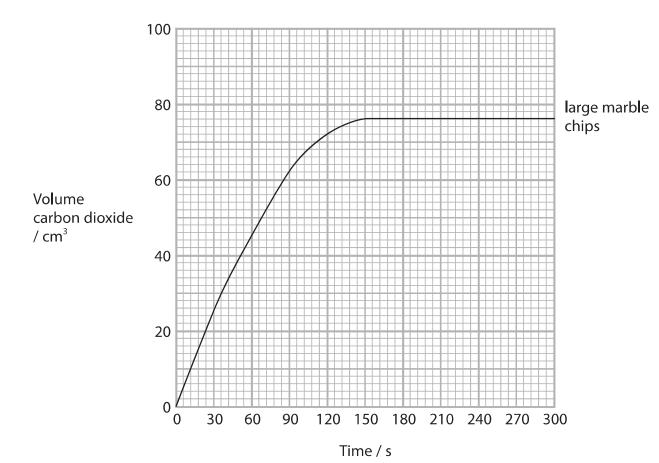
(a) Give the time when the reaction is **just** complete.

(1)

(b) Draw a tangent to the curve at time = 0. Calculate the gradient of the tangent to determine the initial rate of reaction. Include units in your answer.

(3)

initial rate of reaction = units


- (c) To investigate the effect of particle size on the rate of the reaction, the student carried out another experiment using smaller marble chips.

 The same mass of marble chips was used.
 - (i) State **two** factors, other than the mass of marble chips, that must be controlled so that the results of the two experiments may be compared.

(2)

(ii) Add a curve to the graph below to show the expected results for repeating the experiment with the smaller marble chips.

(2)

14

(iii) Explain the difference in the rate of reaction when smaller marble chips used instead of the large marble chips.	are
asea instead of the large marble emps.	(2)
(d) A calculation shows that reacting 25 cm³ of hydrochloric acid with excess m should form 90 cm³ of carbon dioxide.	arble chips
Give a reason why the volume of carbon dioxide collected in the experimer less than 90 cm ³ .	nt is
IESS MAN ZVCIII.	
ाल्डेड वावार ५० वार .	(1)
iess tilait auctii .	
less than soth.	
less than soth.	
less tildii 90ttii .	

- 5 This question is about propanoic acid, CH_3CH_2COOH .
 - (a) An aqueous solution of propanoic acid is prepared by the oxidation of propan-1-ol.

 Outline procedure
 - Step **1** Place 3 cm³ of propan-1-ol in a round-bottom flask and add a few anti-bumping granules.
 - Step 2 Set up the apparatus for reflux, with the round-bottom flask partially immersed in an ice-water bath.
 - Step **3** Add 20 cm³ of acidified potassium dichromate(VI) slowly through the top of the condenser.
 - Step 4 Remove the ice-water bath and heat the mixture under reflux for 30 minutes.
 - Step **5** Allow the apparatus to cool and then rearrange it for distillation. Collect all the distillate up to 143 °C.
 - (i) Suggest a reason why the mixture in the round-bottom flask is cooled as the acidified potassium dichromate(VI) is added in Step 3.

ive a reason why the mixture is heated under reflux rather than in an Step 4 .	open flask (1)

(iii) Draw a labelled diagram of the apparatus, with its contents, arranged for heating under reflux in Step 4.

(4)

(iv) The boiling temperature of propanoic acid is 141 °C.

Suggest the identity of **one** impurity, other than water, that might be present in the distillate collected in Step **5**.

(b) A titration was carried out to find the concentration of an aqueous solution of propanoic acid.

25.0 cm³ of 0.102 mol dm⁻³ sodium hydroxide was placed in a conical flask and titrated with the aqueous solution of propanoic acid using phenolphthalein as indicator.

The mean titre was 18.60 cm³.

The equation for the reaction is

(i) Calculate the concentration of propanoic acid in g dm⁻³.

(3)

(ii) The pipette used to measure the $25.0 \, \text{cm}^3$ of sodium hydroxide had an uncertainty of $\pm 0.06 \, \text{cm}^3$.

Calculate the percentage uncertainty in this measurement.

(1)

(Total for Question 5 = 11 marks)

TOTAL FOR PAPER = 50 MARKS

BLANK PAGE

The Periodic Table of Elements

0 (8)	(18) 4.0 He	2	20.2	Ne	neon 10	39.9	Αr	argon 18	83.8	궃	krypton 36	131.3	Xe	xenon 54	[222]	駋	radon 86		ted	
7		(17)	19.0	L	fluorine 9	35.5	ប	chlorine 17	6.67	В	bromine 35	126.9	Ι	iodine 53	[210]	Αt	astatine 85		oeen repor	
9		(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	0.67	Se	selenium 34	127.6	<u>P</u>	tellurium 52	[509]	8	polonium 84		116 have t	iticated
D.		(15)	14.0	z	nitrogen 7	31.0	۵	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		nbers 112-	but not fully authenticated
4		(14)	12.0	U	carbon 6	28.1	Si		72.6	g	germanium 32	118.7	Sn	ti 20	207.2	Ъ	lead 82		atomic nur	but not fi
м		(13)	10.8	Ω	boron 5	27.0	¥	aluminium 13	2.69	Ga	gallium 31	114.8	I	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported	
		•						(12)	65.4	Zu	zinc 30	112.4	5	cadmium 48	200.6	Hg	mercury 80		Elem	
								(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	Αu	gold 79	[272]	Rg	oentgenium 111
								(10)	58.7	Ę	nickel 28	106.4	Pq	palladium 46	195.1	7	platinum 78	[271]	Mt Ds Rg	darmstadtium 110
								(6)	58.9	ပိ	cobalt 27	102.9	뫈	rhodium 45	192.2	<u>1</u>	iridium 77	[368]	۸t	meitnerium 109
	1.0 H hydrogen	-						(8)	55.8	Fe		200.00	Ru	ruthenium 44	190.2	Os	osmium 76	[277]	H	hassium n
								(7)	54.9	۸n	chromium manganese	1861	် ပ	molybdenum technetium ruthenium 42 44	186.2	Re	rhenium 75	l	Bh	bohrium 107
			mass	log	umber			(9)	52.0	ъ	chromium 24	95.9	Wo	molybdenum 42	183.8	>	tungsten 74	[592]	Sg	seaborgium 106
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	١_		E	180.9	Ā	tantalum 73	[797]	В	dubnium 105
			relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ħ	hafnium 72	[261]	¥	ntherfordium 104
								(3)	45.0	Sc	scandium 2.1	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]		_
7		(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	g	calcium 20	87.6	ş	strontium 38	137.3	Ba	barium 56	[526]	Ra	radium 88
~		(1)	6.9	ב	lithium 3	23.0	Na	_	39.1	¥	potassium 19	85.5	ВЪ	rubidium 37	132.9	ర	caesium 55	[223]	Ŧ	francium 87

* Lanthanide series

* Actinide series

175	Γn	_		[257]	ב	lawrencium	103
173	Х	ytterbium	70		ž	_	
169	Ę	thulium	69	[526]	ÞW	mendelevium	101
167	ដ	erbium	89	[253]	FB	fermium	100
165	유	holmium	29	[254]	Es	einsteinium	66
163	Δ	dysprosium	99	[251]	უ	californium	98
159	P	terbium	65	[242]	짫	berkelium	62
157	РS	gadolinium	64	[247]	Ę	aurium	96
152	Eu	europium	63	[243]	Am	americium	95
150	Sm	samarinm	62	[242]	Pu	plutonium	94
[147]	Pm	promethium	61	[237]	δ	neptunium	93
44	PZ	neodymium	60	238	¬	uranium	92
141	P	praseodymium neodym	59	[231]	Pa	norium protactinium urani	91
140	Ce	cerium	58	232	₽	thorium	90