

Chemistry Higher level Paper 1

Monday 14 November 2016 (morning)

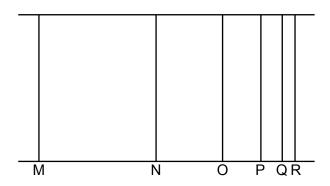
1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

								The	The Periodic Table	dic Ta	able							
	-	7	က	4	ß	9	7	œ	၈	10	7	12	13	4	15	16	17	8
	- I			Aţċ	Atòmic number	per	-										,	2 He 4.00
8	3 Li 6.94	4 Be 9.01		Relati	Relative atomic mass	mass							5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
က	11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.90
	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
9	55 Cs 132.91	56 Ba 137.33	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 0s 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
			++	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

1. Which volume, in cm³, of $0.20 \,\text{mol dm}^{-3} \,\text{NaOH}$ (aq) is needed to neutralize $0.050 \,\text{mol of H}_2 \,\text{S}$ (g)?


$$H_2S(g) + 2NaOH(aq) \rightarrow Na_2S(aq) + 2H_2O(l)$$

- A. 0.25
- B. 0.50
- C. 250
- D. 500
- 2. The complete combustion of 15.0 cm³ of a gaseous hydrocarbon **X** produces 60.0 cm³ of carbon dioxide gas and 75.0 cm³ of water vapour. What is the molecular formula of **X**? (All volumes are measured at the same temperature and pressure.)
 - A. C_4H_6
 - B. C₄H₈
 - C. C₄H₁₀
 - D. C₆H₁₀
- 3. $5.0 \,\text{mol}$ of $\text{Fe}_2\text{O}_3(\text{s})$ and $6.0 \,\text{mol}$ of CO(g) react according to the equation below. What is the limiting reactant and how many moles of the excess reactant remain unreacted?

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

	Limiting reactant	Moles of excess reactant remaining
A.	СО	2.0
B.	СО	3.0
C.	Fe ₂ O ₃	1.0
D.	Fe ₂ O ₃	2.0

4. Which is correct for the line emission spectrum for hydrogen?

-4-

- A. Line M has a higher energy than line N.
- B. Line N has a lower frequency than line M.
- C. Line M has a longer wavelength than line N.
- D. Lines converge at lower energy.
- **5.** Which representation would be correct for a species, **Z**, which has 31 protons, 40 neutrons and 28 electrons?
 - A. $^{71}_{31}Z^{3+}$
 - B. $^{71}_{31}Z^{3-}$
 - C. $^{71}_{40}Z^{34}$
 - D. $^{71}_{28}Z^{3+}$
- **6.** A period 3 element, \mathbf{M} , forms an oxide of the type \mathbf{M}_2 O. Which represents the first four successive ionization energies of \mathbf{M} ?

		lonization energy / kJ mol ⁻¹				
	First	Second	Third	Fourth		
A.	496	4563	6913	9544		
B.	738	1451	7733	10541		
C.	578	1817	2745	11578		
D.	787	1577	3232	4356		

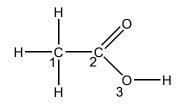
- 7. Which property increases down group 17, the halogens?
 - A. Electron affinity
 - B. Boiling point
 - C. First ionization energy
 - D. Reactivity
- **8.** Which correctly describes the reaction between potassium and excess water?
 - A. The reaction is endothermic.
 - B. The final products of the reaction are potassium oxide and hydrogen.
 - C. The final products of the reaction are potassium hydroxide and hydrogen.
 - D. The final pH of the solution is 7.
- **9.** The oxidation state of cobalt in the complex ion $[Co(NH_3)_5Br]^x$ is +3. Which of the following statements are correct?
 - I. The overall charge, x, of the complex ion is 2+.
 - II. The complex ion is octahedral.
 - III. The cobalt(III) ion has a half-filled d-subshell.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **10.** What is the correct explanation for the colour of $[Cu(H_2O)_6]^{2+}$?
 - A. Light is absorbed when an electron moves to a d orbital of higher energy.
 - B. Light is released when an electron moves to a d orbital of higher energy.
 - C. Light is absorbed when electrons move from the ligands to the central metal ion.
 - D. Light is absorbed when electrons move between d and s orbitals.

11.	How many	electrons	form the	carbon-oxygen	bond in	methanal,	HCHO?
-----	----------	-----------	----------	---------------	---------	-----------	-------

- A. 2
- B. 4
- C. 8
- D. 12

12. Between which pair of molecules can hydrogen bonding occur?

- A. CH₄ and H₂O
- B. CH₃OCH₃ and CF₄
- C. CH₄ and HF
- D. CH₃OH and H₂O


13. Which substance has a giant covalent structure?

	Melting point / °C	Solubility in water	Electrical conductivity in the molten state
A.	186	high	none
B.	801	high	good
C.	1083	low	good
D.	1710	low	none

14. Which species has bond angles of 90°?

- A. AlCl₄
- B. ICl_4^-
- C. NH_4^+
- D. SiCl₄

15. What is the hybridization of the numbered atoms in ethanoic acid?

	Atom 1	Atom 2	Atom 3
A.	sp³	sp	sp ²
B.	sp³	sp²	sp
C.	sp²	sp³	sp ²
D.	sp³	sp²	sp³

16. Hydrazine reacts with oxygen.

$$N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(l)$$
 $\Delta H^{\oplus} = -623 \text{ kJ}$

What is the standard enthalpy of formation of $N_2H_4(l)$ in kJ? The standard enthalpy of formation of $H_2O(l)$ is $-286\,kJ$.

A.
$$-623 - 286$$

B.
$$-623 + 572$$

C.
$$-572 + 623$$

D.
$$-286 + 623$$

17. 5.35 g of solid ammonium chloride, $NH_4Cl(s)$, was added to water to form 25.0 g of solution. The maximum decrease in temperature was 14 K. What is the enthalpy change, in kJ mol⁻¹, for this reaction? (Molar mass of $NH_4Cl = 53.5 \, \text{g mol}^{-1}$; the specific heat capacity of the solution is $4.18 \, \text{Jg}^{-1} \, \text{K}^{-1}$)

A.
$$\Delta H = + \frac{25.0 \times 4.18 \times (14 + 273)}{0.1 \times 1000}$$

B.
$$\Delta H = -\frac{25.0 \times 4.18 \times 14}{0.1 \times 1000}$$

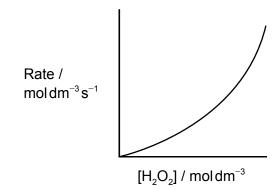
C.
$$\Delta H = +\frac{25.0 \times 4.18 \times 14}{0.1 \times 1000}$$

D.
$$\Delta H = +\frac{25.0 \times 4.18 \times 14}{1000}$$

- **18.** Which represents the enthalpy change of hydration of the chloride ion?
 - A. $Cl^{-}(g) \xrightarrow{H_2O} Cl^{-}(aq)$
 - B. $Cl(g) \xrightarrow{H_2O} Cl^-(aq)$
 - C. $\frac{1}{2} \operatorname{Cl}_2(g) \xrightarrow{H_2O} \operatorname{Cl}^-(aq)$
 - $D. \qquad \frac{1}{2} \operatorname{Cl}_2(\operatorname{aq}) \xrightarrow{H_2O} \operatorname{Cl}^-(\operatorname{aq})$
- **19.** Which ionic compound has the largest value of lattice enthalpy?
 - A. MgS
 - B. MgO
 - C. CaBr₂
 - D. NaF
- 20. Which experimental methods could be used to observe the progress of the following reaction?

$$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 6\text{I}^-(\text{aq}) + 14\text{H}^+(\text{aq}) \rightarrow 2\text{Cr}^{3+}(\text{aq}) + 3\text{I}_2(\text{aq}) + 7\text{H}_2\text{O}(\text{l})$$

- I. Change in colour
- II. Change in mass
- III. Change in electrical conductivity
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **21.** Which statement describes the characteristics of a transition state relative to the potential energy of the reactants and products?
 - A. It is an unstable species with lower potential energy.
 - B. It is an unstable species with higher potential energy.
 - C. It is a stable species with lower potential energy.
 - D. It is a stable species with higher potential energy.

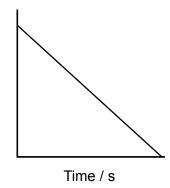

22. Decomposition of hydrogen peroxide in an aqueous solution proceeds as follows.

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$


The rate expression for the reaction was found to be: rate = $k [H_2O_2]$.

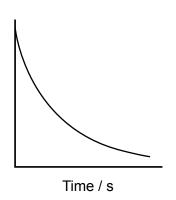
Which graph is consistent with the given rate expression?

A.


B.

C.

 $[H_2O_2]/$


 $moldm^{-3}$

D.

 $[H_2O_2]/$

 $moldm^{-3}$

- **23.** The rate constant, k, is commonly described by the Arrhenius equation: $k = Ae^{\frac{-E_a}{RT}}$. Which of the following statements are correct?
 - I. A greater E_a value results in a smaller k value.
 - II. Reactions of less complex molecules usually have a greater value of A.
 - III. The slope (gradient) of $\ln k$ versus $\frac{1}{T}$ equals E_a .
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

24. What happens when the temperature of the following equilibrium system is increased?

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H^{\ominus} = -91 \text{ kJ}$

	Position of equilibrium	Reaction rates of forward and reverse reactions
A.	shifts to the left	increase
B.	shifts to the left	decrease
C.	shifts to the right	decrease
D.	shifts to the right	increase

25. A mixture of $0.40\,\text{mol}$ of CO(g) and $0.40\,\text{mol}$ of H₂(g) was placed in a $1.00\,\text{dm}^3$ vessel. The following equilibrium was established.

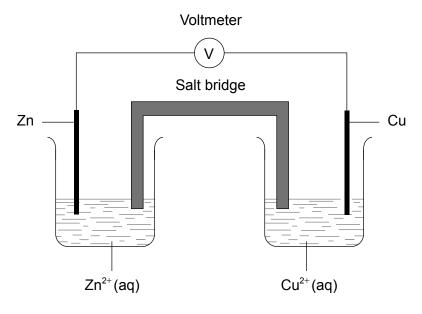
$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

At equilibrium, the mixture contained $0.25 \,\text{mol}$ of CO(g). How many moles of $H_2(g)$ and $CH_3OH(g)$ were present at equilibrium?

	Equilibrium mol of H ₂	Equilibrium mol of CH ₃ OH
A.	0.25	0.15
B.	0.50	0.25
C.	0.30	0.25
D.	0.10	0.15

26. Which species behave as Brønsted–Lowry bases in the following reaction?

$$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$


- A. HNO₃ and HSO₄
- B. HNO₃ and H₂NO₃⁺
- C. H₂SO₄ and HSO₄
- D. $H_2NO_3^+$ and HSO_4^-

- 27. What occurs when solid sodium hydrogen carbonate reacts with aqueous sulfuric acid?
 - A. Bubbles of sulfur dioxide form.
 - B. Bubbles of both hydrogen and carbon dioxide form.
 - C. Bubbles of hydrogen form.
 - D. Bubbles of carbon dioxide form.
- 28. Which mixture is a buffer solution?
 - A. $25 \,\mathrm{cm^3}$ of $0.10 \,\mathrm{mol}\,\mathrm{dm^{-3}}$ NH₃(aq) and $50 \,\mathrm{cm^3}$ of $0.10 \,\mathrm{mol}\,\mathrm{dm^{-3}}$ HCl (aq)
 - B. $50 \text{ cm}^3 \text{ of } 0.10 \text{ mol dm}^{-3} \text{ NH}_3(\text{aq}) \text{ and } 25 \text{ cm}^3 \text{ of } 0.10 \text{ mol dm}^{-3} \text{ HCl (aq)}$
 - C. 25 cm³ of 0.10 mol dm⁻³ NaOH (aq) and 25 cm³ of 0.10 mol dm⁻³ HCl (aq)
 - D. 50 cm³ of 0.10 mol dm⁻³ NaOH (aq) and 25 cm³ of 0.10 mol dm⁻³ HCl (aq)
- 29. Which salt solution has the highest pH?
 - A. NH₄Cl
 - B. $Ca(NO_3)_2$
 - C. Na₂CO₃
 - D. K₂SO₄
- **30.** Which is a correct statement for the reaction below?

$$2MnO_4^-(aq) + 6H^+(aq) + 5NO_2^-(aq) \rightarrow 2Mn^{2+}(aq) + 5NO_3^-(aq) + 3H_2O(l)$$

- A. MnO_4^- is the reducing agent and the oxidation number of Mn increases.
- B. MnO_4^- is the oxidizing agent and the oxidation number of Mn decreases.
- C. NO_2^- is the reducing agent and the oxidation number of N decreases.
- D. NO₂ is the oxidizing agent and the oxidation number of N increases.

31. A voltaic cell is constructed from zinc and copper half-cells. Zinc is more reactive than copper. Which statement is correct when this cell produces electricity?

- A. Electrons flow from the copper half-cell to the zinc half-cell.
- B. The concentration of $Cu^{2+}(aq)$ increases.
- C. Electrons flow through the salt bridge.
- D. Negative ions flow through the salt bridge from the copper half-cell to the zinc half-cell.
- **32.** Which signs for both $E_{\text{cell}}^{\ominus}$ and $\Delta G_{\text{cell}}^{\ominus}$ result in a spontaneous redox reaction occurring under standard conditions?

	E [⊕] _{cell}	∆G [↔]
A.	+	+
B.	_	+
C.	_	-
D.	+	-

- 33. An iron rod is electroplated with silver. Which is a correct condition for this process?
 - A. The silver electrode is the positive electrode.
 - B. The iron rod is the positive electrode.
 - C. The electrolyte is iron(II) sulfate.
 - D. Oxidation occurs at the negative electrode.
- **34.** The structure of a drug used to treat symptoms of Alzheimer's disease is shown below. Which functional groups are present in this molecule?

$$CH_3O$$
 CH_3
 CH_3

- A. Hydroxyl and ester
- B. Hydroxide and ether
- C. Hydroxyl and ether
- D. Hydroxide and ester
- **35.** Which monomer is used to form the polymer with the following repeating unit?

$$\begin{bmatrix}
H & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
CH_3 & CH_3
\end{bmatrix}$$

- A. CH₃CH=CHCH₃
- B. CH₃CH₂CH=CH₂
- C. CH₃CH₂CH₂CH₃
- D. $(CH_3)_2C=CH_2$

36. Which is correct for the conversion of propanal to propyl methanoate?

$$\begin{array}{c} \text{Step 1} & \text{Step 2} \\ \text{CH}_3\text{CH}_2\text{CHO} & \longrightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} & \longrightarrow \text{HCO}_2\text{CH}_2\text{CH}_2\text{CH}_3 \\ \text{Reagent 1} & \text{Concentrated H}_2\text{SO}_4 \\ & \text{and methanoic acid} \end{array}$$

	Reagent for step 1	Reaction type in step 1	Reaction type in step 2
A.	H ₂ O	hydration	addition
B.	K ₂ Cr ₂ O ₇ , dilute H ₂ SO ₄	oxidation	nucleophilic substitution (condensation)
C.	NaBH ₄	reduction	oxidation
D.	NaBH₄	reduction	nucleophilic substitution (condensation)

- **37.** Which statement is correct for a pair of enantiomers under the same conditions?
 - A. A racemic mixture of the enantiomers is optically active.
 - B. They have the same chemical properties in all their reactions.
 - C. They have the same melting and boiling points.
 - D. They rotate the plane of plane-polarized light by different angles.
- **38.** A student carried out a titration to determine the concentration of an acid and found that his value had good precision but poor accuracy. Which process explains this outcome?
 - A. Consistently overshooting the volume of solution from the burette into the flask.
 - B. Collection of insufficient titration data.
 - C. Reading the meniscus in the burette at a different angle each time.
 - D. Forgetting to rinse the flask after one of the titrations.

- **39.** What is always correct about the molecular ion, M⁺, in a mass spectrum of a compound?
 - A. The M^+ ion peak has the smallest m/z ratio in the mass spectrum.
 - B. The m/z ratio of the M^+ ion peak gives the relative molecular mass of the molecule.
 - C. The M⁺ ion is the most stable fragment formed during electron bombardment.
 - D. The M⁺ ion peak has the greatest intensity in the mass spectrum.
- **40.** Which property explains why tetramethylsilane, Si(CH₃)₄, can be used as a reference standard in ¹HNMR spectroscopy?
 - A. It has a high boiling point.
 - B. It is a reactive compound.
 - C. All its protons are in the same chemical environment.
 - D. It gives multiple signals.