

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

November 2016

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Question		ion	Answers	Notes	Total
1.	а	i	$\ll K_{c} = \gg \frac{[HOCH_{2}CH_{2}OH]}{[CO]^{2} \times [H_{2}]^{3}} \checkmark$		1
1.	а	ii	Position of equilibrium: moves to right OR favours product \checkmark K_c : no change OR is a constant at constant temperature \checkmark		2
1.	a	111	Bonds broken: $2C\equiv O + 3(H-H) / 2(1077 \text{ kJ mol}^{-1}) + 3(436 \text{ kJ mol}^{-1}) / 3462 \text{ (kJ)} \checkmark$ Bonds formed: $2(C-O) + 2(O-H) + 4(C-H) + (C-C) / 2(358 \text{ kJ mol}^{-1}) + 2(463 \text{ kJ mol}^{-1}) + 4(414 \text{ kJ mol}^{-1}) + 346 \text{ kJ mol}^{-1} / 3644 \text{ (kJ)} \checkmark$ «Enthalpy change = bonds broken - bonds formed = $3462 \text{ kJ} - 3644 \text{ kJ} = $ » - $182 \text{ (kJ)} \checkmark$	Award [3] for correct final answer. Award [2 max] for «+»182«kJ».	3
1.	b	i	\ll Δ <i>H</i> = Σ Δ <i>H_f</i> products − Σ Δ <i>H_f</i> reactants = −454.8 kJ mol ⁻¹ − 2(−110.5 kJ mol ⁻¹) =» −233.8 «kJ» ✓		1
1.	b	ii	in (a)(iii) gas is formed and in (b)(i) liquid is formed <i>OR</i> products are in different states <i>OR</i> conversion of gas to liquid is exothermic <i>OR</i> conversion of liquid to gas is endothermic <i>OR</i> enthalpy of vapourisation needs to be taken into account ✓	Accept product is «now» a liquid. Accept answers referring to bond enthalpies being means/averages.	1

(Question 1 continued)

G	Questi	ion	Answers	Notes	Total
1.	b	iii	 «∆S is negative because five mols of» gases becomes «one mol of» liquid OR increase in complexity of product «compared to reactants» OR product more ordered «than reactants» ✓ 	Accept "fewer moles of <u>gas</u> " but not "fewer molecules".	1
1.	b	iv	$\Delta S = \left(\frac{-620.1}{1000}\right) \text{ (kJ K}^{-1} \text{ (s) } \text{ (kJ K}^{-1} \text{ (kJ K}^{-1}$	Award [2] for correct final answer. Award [1 max] for $(+)$ 185 \times 10 ³ . If -244.0 kJ used, answer is: $\Delta G = -244.0 \text{ kJ} - (298 \text{ K} \left(\frac{-620.1}{1000}\right) \text{ kJ K}^{-1}) =$ -59.2 (kJ) Award [2] for correct final answer.	2
1.	b	v	increasing T makes Δ <i>G</i> larger/more positive/less negative <i>OR</i> -TΔ <i>S</i> will increase ✓		1
1.	C		Ethene: -2 ✓ Ethane-1,2-diol: -1 ✓	Do not accept 2–, 1– respectively.	2

(Question 1 continued)

Question			Answers			Notes	Total
1.	d	ethane-1,2-diol can h cannot» <i>OR</i> ethane-1,2-diol has « hydrogen bonding is forces ✓	ydrogen bond to othe significantly» greater «significantly» strong	er moled ⁻ van de jer than	cules «and ethene er Waals forces ✓ other intermolecular	Accept converse arguments. Award [0] if answer implies covalent bonds are broken.	2
1.	e	acidified «potassium» dichromate«(VI)» / H ⁺ AND K ₂ Cr ₂ O ₇ / H ⁺ AND Cr ₂ O ₇ ²⁻ OR «acidified potassium» manganate(VII) / «H ⁺ » KMnO ₂ / «H ⁺ » MnO ₂ ⁻ ✓			Accept H_2SO_4 or H_3PO_4 for H^+ . Accept "permanganate" for "manganate(VII)".	1	
1.	f		Number of signals		Splitting pattern	Accept "none/no splitting" for singlet.	
		Ethanedioic acid:	1	AND	singlet 🗸		2
		Ethane-1,2-diol:	2 ✓		Not required		

2.	a	Weak acid: partially dissociated/ionized «in solution/water»	Accept answers relating to pH, conductivity,	
		AND	reactivity if solutions of equal concentrations	1
		Strong acid: «assumed to be almost» completely/100% dissociated/	stated.	•
		ionized «in solution/water» 🗸		

(Question 2 continued)

Question		on	Answers	Notes	Total
2.	b		 «log scale» reduces a wide range of numbers to a small range <i>OR</i> simple/easy to use <i>OR</i> converts exponential expressions into a linear scale/simple numbers ✓ 	Do not accept "easy for calculations".	1
2.	С	i	phenolphthalein <i>OR</i> phenol red ✓		1
2.	C	ii	$(n(NaOH) = \left(\frac{14.0}{1000}\right) dm^{3} \times 0.100 \text{ mol } dm^{-3} = 1.40 \times 10^{-3} \text{ (mol)} \checkmark$		1
2.	C	iii	$\left(\frac{1}{2} \times 1.40 \times 10^{-3} = 7.00 \times 10^{-4} \text{ (mol)} \right) \checkmark$		1

(Question 2 continued)

(Question 2 continued)

Question		Answers	Notes	Total
2.	d	$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots &$	Accept single negative charges on two O atoms singly bonded to C. Do not accept resonance structures. Allow any combination of dots/crosses or lines to represent electron pairs.	1
2.	e	electrons delocalized «across the O–C–O system» OR resonance occurs ✓ 122 «pm» < C–O < 143 «pm» ✓	Accept delocalized <i>π</i> -bond(s). No ECF from (d). Accept any answer in range 123 «pm» to 142 «pm». Accept "bond intermediate between single and double bond" or "bond order 1.5"	2
2.	f	coordinate/dative/covalent bond from O to «transition» metal «ion» OR acts as a Lewis base/nucleophile ✓ can occupy two positions OR provide two electron pairs from different «O» atoms OR form two «coordinate/dative/covalent» bonds «with the metal ion» OR chelate «metal/ion» ✓		2

Question		on	Answers	Notes	Total	
3.	а		H₂O AND (l) ✓	Do not accept H ₂ O (aq).	1	
3.	b		SO₂(g) is an irritant/causes breathing problems OR SO₂(g) is poisonous/toxic ✓	Accept SO ₂ (g) is acidic but do not accept "causes acid rain". Accept SO ₂ (g) is harmful. Accept SO ₂ (g) has a foul/pungent smell.	1	
3.	C		n(HCl) = $\left(\frac{10.0}{1000} \text{ dm}^3 \times 2.00 \text{ mol dm}^{-3} = 0.0200 / 2.00 \times 10^{-2} \text{ cmol}\right)$ AND n(Na ₂ S ₂ O ₃) = $\left(\frac{50}{1000} \text{ dm}^3 \times 0.150 \text{ mol} \times \text{ dm}^{-3} = 0.00750 / 7.50 \times 10^{-3} \text{ cmol}\right) \checkmark$ 0.0200 «mol» > 0.0150 «mol» OR 2.00 × 10 ⁻² «mol» > 2 × 7.50 × 10 ⁻³ «mol» OR $\frac{1}{2} \times 2.00 \times 10^{-2} \text{ cmol}\right) > 7.50 \times 10^{-3} \text{ cmol} \checkmark$	Accept answers based on volume of solutions required for complete reaction. Award [2] for second marking point. Do not award M2 unless factor of 2 (or half) is used.	2	

N16/4/CHEMI/HP2/ENG/TZ0/XX/M

(Question 3 continued)

(Question 3 continued)

(Question 3 continued)

Question		on	Answers	Notes	Total
3.	g		Eraction of particles	Accept "probability «density» / number of particles / N / fraction" on y-axis. Accept "kinetic E/KE/E _k " but not just "Energy/E" on x-axis.	2
			peak of I_2 curve lower AND to the right of I_1 curve \bullet		

(Question 3 continued)

Question		ion	Answers	Notes	Total
3.	g	11	greater proportion of molecules have $E \ge E_a$ or $E > E_a$ <i>OR</i> greater area under curve to the right of the $E_a \checkmark$ greater frequency of collisions «between molecules» <i>OR</i> more collisions per unit time/second \checkmark	 Accept more molecules have energy greater than E_a. Do not accept just "particles have greater kinetic energy". Accept "rate/chance/probability/likelihood" instead of "frequency". Accept suitably shaded/annotated diagram. Do not accept just "more collisions". 	2
3.	h		shorter reaction time so larger «%» error in timing/seeing when mark disappears ✓	Accept cooling of reaction mixture during course of reaction.	1

Question		on	Answers	Notes	Total
4.	а		²⁶ ₁₂ Mg ✓		1
4.	b		$ \overset{\text{(A}_{r} = \ \text{(A}_{r} =$	Award [2] for correct final answer. Do not accept data booklet value (24.31).	2
4.	С		contamination with sodium/other «compounds» ✓		1
4.	d	i	energy levels are closer together <u>at high energy / high frequency / short</u> wavelength ✓		1
4.	d	ii	ionisation energy 🗸		1
4.	е		$ \begin{array}{l} MgO(s) + H_2O(l) \to Mg(OH)_2(s) \\ \textbf{OR} \\ MgO(s) + H_2O(l) \to Mg^{2+}(aq) + 2OH^{-}(aq) \checkmark \end{array} $	Accept ⇔.	1
4.	f		from basic to acidic ✓ through amphoteric ✓	Accept "alkali/alkaline" for "basic". Accept "oxides of Na and Mg: basic AND oxide of AI: amphoteric" for M1. Accept "oxides of non-metals/Si to Cl acidic" for M2. Do not accept just "become more acidic".	2
4.	g		$Mg_3N_2 \checkmark$	Accept MgO_2 , $Mg(OH)_2$, $Mg(NO_x)_2$, $MgCO_3$.	1
4.	h		 «3-D/giant» regularly repeating arrangement «of ions» <i>OR</i> lattice «of ions» ✓ electrostatic attraction between oppositely charged ions <i>OR</i> 	Accept "giant" for M1 unless "giant covalent" stated. Do not accept "ionic" without description.	2
			electrostatic attraction between Mg ⁻⁺ and O ^{2−} ions ✓	Penalize missing/incorrect state symbols at	
4.			$2Cl^{-} \rightarrow Cl_{2}(g) + 2e^{-} \checkmark$	Cl_2 and Mg once only.	
			Cathode (negative electrode): $Mg^{2^+} + 2e^- \rightarrow Mg(l) \checkmark$	Award [1 max] if equations are at wrong electrodes. Accept Mg (g).	2

(Question 4 continued)

Question		on	Answers	Notes	Total
4.	i	ii	reduction 🖌		1
4.	i	iii	Anode (positive electrode): oxygen/O ₂ OR hydogen ion/proton/H ⁺ AND oxygen/O ₂ ✓ Cathode (negative electrode): hydrogen/H ₂ OR hydroxide «ion»/OH ⁻ AND hydrogen/H ₂ ✓	Award [1 max] if correct products given at wrong electrodes.	2
4.	j		Any two of: «inert» Pt electrode OR platinum black conductor \checkmark 1 mol dm ⁻³ H ⁺ (aq) \checkmark H ₂ (g) at 100 kPa \checkmark	Accept 1 atm $H_2(g)$. Accept 1 bar $H_2(g)$ Accept a labelled diagram. Ignore temperature if it is specified.	2 max
4.	k	i	$Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) + Cu(s) \checkmark$		1
4.	k	ii	«+0.34 V − (−2.37 V) = +»2.71 «V» ✓		1
4.	k	iii	cell potential increases ✓ reaction «in Q4(k)(i)» moves to the right <i>OR</i> potential of the copper half-cell increases/becomes more positive ✓	Accept correct answers based on the Nernst equation.	2

Question		on	Answers		Notes	Total
5.	a		Propane: H H H H H C C C C H H H H H H H AND Propene: H C C C H \checkmark			1
5.	b	I	Sigma (σ): ••••••••••••••••••••••••••••••••••••			2
5.	b	ii	Number of sigma (σ) bondsNumber of pi (π) bondPropane100Propene81	S	Award [1] for two or three correct answers. Award [2] for all four correct.	2

(Question 5 continued)

Question		on	Answers	Notes	Total
5.	C	i	$C_{3}H_{8} + Br_{2} \rightarrow C_{3}H_{7}Br + HBr \checkmark$ «sun»light/UV/ <i>hv OR</i> high temperature ✓	Do not accept "reflux" for M2.	2
5.	С	ii	$C_{3}H_{6} + Br_{2} \rightarrow C_{3}H_{6}Br_{2} \checkmark$		1
5.	C	iii	Propane: «free radical» substitution / S_R ANDPropene: «electrophilic» addition / $A_E \checkmark$		1
5.	d		$H \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$	Award [2 max] for formation of 1-bromopropane.	3

Question		Answers	Notes	Total
6.	a	H H ₅ C ₂ C_{H_3} H_{H_3} C_{C_2} C_{C_2} H_{S_1} C_{C_2} H_{S_2} H_{S_2} C_{C_2} H_{S_2} H_{S_2} C_{C_2} H_{S_2} H_{S_2} C_{C_2} H_{S_2} $H_{$		2
6.	b	S _N 2 would give inversion of configuration «almost 100%» OR S _N 1 would give «approximately» 50% of each ✓ so mechanism is a mixture of both mechanisms ✓		2
6.	C	C–I bond «longer, so» weaker «than C–Br bond» OR I [−] is a better leaving group than Br [−] ✓		1

Question		Answers	Notes	Total
7.	a	Calculation: ALTERNATIVE 1: $[H^+] = (K_a \times [HA])^{1/2} / (1.6 \times 10^{-4} \times 0.0100)^{1/2} / 1.3 \times 10^{-3} \text{ wmol dm}^{-3} \text{ wmol dm}^{-3} \text{ scales}$ $pH = (-\log_{10}[H^+] \approx) 2.9 \text{ scales}$ $ALTERNATIVE 2:$ $pH = 0.5(pK_a - \log_{10}[HA]) \text{ scales}$ $pH = 2.9 \text{ scales}$ $Assumption:$ ionisation is << 0.0100 so $0.0100 - [A^-] \approx 0.0100$	Award [2] for correct final answer.	3
		$[HA]_{eqm} = [HA]_{initial}$ OR all H ⁺ ions in the solution come from the acid «and not from the self-ionisation of water» OR $[H^+] = [HCOO^-] \checkmark$	Do not accept partial dissociation.	

(Question 7 continued)

Question	Answers	Notes	Total
b i	pH 7 pK_a V_n $Volume V_n$ Volume of strong base added correct shape of graph \checkmark pH at half neutralization/equivalence \checkmark	M1: must show buffer region at pH < 7 and equivalence at pH > 7. Accept graph starting from where two axes meet as pH scale is not specified.	2
b ii	ALTERNATIVE 1: HCOOH \rightleftharpoons HCOO ⁻ + H ⁺ \checkmark H ⁺ ions consumed in reaction with OH ⁻ are produced again as equilibrium moves to the right «so [H ⁺] remains almost unchanged» \checkmark ALTERNATIVE 2: HCOOH + OH ⁻ \rightleftharpoons HCOO ⁻ + H ₂ O \checkmark added OH ⁻ are neutralized by HCOOH OR strong base replaced by weak base \checkmark	Accept HA or any other weak acid in equations. Equilibrium sign must be included in equation for M1.	2